Rabu, 15 Desember 2010

Gaya Gerak Listrik Induksi GGL, Medan Magnet menimbulkan Arus Listrik

Michael Faraday (1791-1867), seorang ilmuwan berkebangsaan Inggris, membuat hipotesis (dugaan) bahwa medan magnet seharusnya dapat menimbulkan arus listrik. Untuk membuktikan kebenaran hipotesis Faraday.

Berdasarkan percobaan, ditunjukkan bahwa gerakan magnet di dalam kumparan menyebabkan jarum galvanometer menyimpang. Jika kutub utara magnet digerakkan mendekati kumparan, jarum galvanometer menyimpang ke kanan. Jika magnet diam dalam kumparan, jarum galvanometer tidak menyimpang. Jika kutub utara magnet digerakkan menjauhi kumparan, jarum galvanometer menyimpang ke kiri. Penyimpangan jarum galvanometer tersebut menunjukkan bahwa pada kedua ujung kumparan terdapat arus listrik. Peristiwa timbulnya arus listrik seperti itulah yang disebut induksi elektromagnetik. Adapun beda potensial yang timbul pada ujung kumparan disebut gaya gerak listrik (GGL) induksi.

Terjadinya GGL induksi dapat dijelaskan seperti berikut. Jika kutub utara magnet didekatkan ke kumparan. Jumlah garis gaya yang masuk kumparan makin banyak. Perubahan jumlah garis gaya itulah yang menyebabkan terjadinya penyimpangan jarum galvanometer. Hal yang sama juga akan terjadi jika magnet digerakkan keluar dari kumparan. Akan tetapi, arah simpangan jarum galvanometer berlawanan dengan penyimpangan semula. Dengan demikian, dapat disimpulkan bahwa penyebab timbulnya GGL induksi adalah perubahan garis gaya magnet yang dilingkupi oleh kumparan.

Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan. Artinya, makin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul. Adapun yang dimaksud fluks nmgnetik adalah banyaknya garis gaya magnet yang menembus suatu bidang.

Generator

Generator atau pembangkit listrik yang sederhana dapat ditemukan pada sepeda. Pada sepeda, biasanya dinamo digunakan untuk menyalakan lampu. Caranya ialah bagian atas dinamo (bagian yang dapat berputar) dihubungkan ke roda sepeda. Pada proses itulah terjadi perubalian energi gerak menjadi energi listrik. Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik. Alat ini pertama kali ditemukan oleh Michael Faraday.
Berkebalikan dengan motor listrik, generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun. Berdasarkan arus yang dihasilkan. Generator dapat dibedakan menjadi dua rnacam, yaitu generator AC dan generator DC. Generator AC menghasilkan arus bolak-balik (AC) dan generator DC menghasilkan arus searah (DC). Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.

Generator AC

Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida). cincin geser, dan sikat. Pada generator. perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. OIeh karena itu, arus induksi yang ditimbulkan berupa arus AC. Adanya arus AC ini ditunjukkan oleh menyalanya lampu pijar yang disusun seri dengan kedua sikat. Sebagaimana percobaan Faraday

GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:

memperbanyak lilitan kumparan,

menggunakan magnet permanen yang lebih kuat.

mempercepat perputaran kumparan, dan menyisipkan inti besi lunak ke dalam kumparan.

Contoh generator AC yang akan sering kita jumpai dalam kehidupan sehari-hari adalah dinamo sepeda. Bagian utama dinamo sepeda adalah sebuah magnet tetap dan kumparan yang disisipi besi lunak. Jika magnet tetap diputar, perputaran tersebut menimbulkan GGL induksi pada kumparan. Jika sebuah lampu pijar (lampu sepeda) dipasang pada kabel yang menghubungkan kedua ujung kumparan. lampu tersebut akan dilalui arus induksi AC. Akibatnya, lampu tersebut menyala. Nyala lampu akan makin terang jika perputaran magnet tetap makin cepat (laju sepeda makin kencang).

Generator DC
Prinsip kerja generator (dinamo) DC sama dengan generator AC. Namun, pada generator DC arah arus induksinya tidak berubah. Hal ini disebabkan cincin yang digunakan pada generator DC berupa cincin belah (komutator).

Transformator

Agar tidak berbahaya tegangan yang tinggi itu harus diturunkan terlebih dahulu sebelum arus listrik disalurkan ke rumah-rumah penduduk. Pada umumnya tegangan listrik yang disalurkan ke rumah-rumah penduduk ada dua macam, yaitu 220 volt dan 1l0 volt. Alat yang digunakan untuk menurunkan tegangan disebut transformator.
Bagian utama transformator adalah dua buah kumparan yang keduanya dililitkan pada sebuah inti besi lunak. Kedua kumparan tersebut memiliki jumlah lilitan yang berbeda. Kumparan yang dihubungkan dengan sumber tegangan AC disebut kumparan primer, sedangkan kumparan yang lain disebut kumparan sekunder.
Jika kumparan primer dihubungkan dengan sumber tegangan AC (dialiri arus listrik AC), besi lunak akan menjadi elektromagnet. Karena arus yang mengalir tersebut adalah arus AC, garis-garis gaya elektromagnet selalu berubah-ubah. Oleh karena itu, garis-garis gaya yang dilingkupi oleh kumparan sekunder juga berubah-ubah. Perubahan garis gaya itu menimbulkan GGL induksi pada kumparan sekunder. Hal itu menyebabkan pada kumparan sekunder mengalir arus AC (arus induksi).

Kita dapat rnembedakan transformator menjadi dua macam. yaitu transformator step up dan transformator step down. Transformator .step up adalah transformator yang jumlah lilitan primernya lebih kecil dari pada lilitan sekunder. Oleh karena itu, transformator step up dapat digunakun untuk menaikkan tegangan AC.

Prinsip Terbentuknya Gaya Gerak Listrik (GGL) Induksi

1
Quantcast


Prinsip terbentuknya gaya gerak listrik (GGL) dalam sebuah penghantar merupakan peristiwa induksi seperti gambar di samping.

Apabila sebatang penghantar digerak-gerakkan sedemikian rupa dalam medan magnet sehingga memotong garis-garis gaya magnet, maka pada penghantar tersebut akan terbentuk GGL induksi.


Arah gerak GGL induksi yang terjadi ditunjukkan dengan aturan tangan kanan sebagai berikut (perhatikan gambar) :

Bila telapak tangan kanan dibuka sedemikian rupa sehingga ibu jari dan keempat jari lainnya saling tegak lurus (900), maka ibu jari menunjukkan arah gerak penghantar (F) sedangkan garis yang menembus telapak tangan kanan adalah garis gaya (medan) magnit (Φ) dan empat jari lainnya menunjukkan arah GGL induksi yang terjadi (e), perhatikan gambar di samping.

Untuk lebih memahami prinsip terbentuknya GGL induksi perhatikan percobaan Faraday seperti pada gambar di samping.

Jika batang magnet didorong masuk, jarum galvanometer G akan bergerak dan jika mendorongnya dihentikan, jarum galvanometer akan diam.

Demikian pula sebaliknya, jika batang magnet diubah arah gerakannya (ditarik), jarum galvanometer akan bergerak sesaat dan kembali diam jika gerakan batang magnet dihentikan dan gerakan jarum galvanometer mempunyai arah yang berlawanan dengan arah gerakan semula.

Bergeraknya jarum galvanometer tersebut disebabkan oleh adanya GGL induksi pada kumparan dan besar GGL induksi yang terjadi sesuai dengan hukum Faraday II adalah :

Besarnya GGL induksi yang terjadi dalam suatu penghantar atau rangkaian berbanding lurus dengan kecepatan perubahan flux magnet yang dilingkupinya. Secara matematis dituliskan :

Jika penghantar tersebut merupakan sebuah kumparan dengan N lilitan, maka besar GGL induksi yang terjadi adalah :

Tanda negatif pada persamaan di atas menunjukkan persesuaian dengan hukum Lenz sebagai berikut :

Arah arus induksi dalam penghantar sedemikian rupa sehingga medan magnet yang dihasilkan melawan perubahan garis-garis gaya maget yang menimbulkannya.

Gambar di samping adalah sebuah kumparan dengan N lilitan yang diputar pada suatu sumbu dalam medan magnet homogen.

Saat kumparan pada posisi A – B (lihat gambar A dan gambar B), fluks magnet (Ф) yang berhasil dilingkupi adalah maksimum (Фm).

Tetapi saat kumparan diputar berlawanan arah jarum jam sejauh α dan berada posisi A’ – B’ maka fluks magnet yang berhasil dilingkupi hanya sebesar :

Ф = Фm cos α. . . . . (1)

Bila kumparan kumparan tersebut diputar dengan kecepatan ω dan perubahan dari posisi AB ke posisi A’ B’ ditempuh dalam waktu t detik, maka besar sudut yang ditempuh adalah α = ω . t.

Dengan demikian dapat disimpulkan bahwa besar flux magnet yang dapat dilingkupi oleh kumparan setiap saatnya adalah :

Ф = Фm cos ω . t . . . . (2)

Sehingga besar GGL induksi yang terjadi setiap saatnya dapat dihitung sbb :

e = N.Фm sin ωt. ω . . . . (3)

e = ω.N.Фm sin ωt . . . . (4)

Dari persamaan di atas terlihat bahwa GGL induksi (tegangan) e merupakan fungsi sinus.

Hal ini berarti bahwa tegangan e akan mencapai harga maksimum pada saat sin ωt = 1.

Dengan demikian besarnya tegangan maksimum dapat dihitung sebagai berikut :

Em = ω.N.Фm . . . . (5)

Sehingga persamaan (4) berubah menjadi :

e = Em sin ωt . . . . (6)

Bila tegangan ini dihubungkan dengan beban resistif, maka arus akan mengalir dan persamaan arusnya dapat ditulis sebagai berikut :

i = Im sin ωt . . . . (7)

Berdasarkan uraian di atas dapat dipahami, bahwa jika kumparan di atas diputar sejauh 2π radian (3600), maka tegangan yang terjadi akan berbentuk gelombang sinus seperti pada gambar di samping dan dari gambar tersebut terlihat bahwa tegangan akan mencapai harga maksimumnya pada saat :

karena pada saat tersebut nilai sinusnya sama dengan satu dan minus satu.

Harga maksimum disebut juga dengan harga puncak (peak value) atau amplitudo.

Sedangkan harga maksimum positif ke maksimum negatif disebut dengan harga puncak ke puncak (peak to peak value).

GAYA LORENTZ

Konsep Gaya Lorentz

Jika arus listrik mengalir dari A ke B ternyata pita dari alumunium foil melengkung ke atas , ini berarti ada sesuatu gaya yang berarah keatas akibat adanya medan magnet homogen dari utara ke selatan. Gaya ini selanjutnya disebut sebagai gaya magnetic atau gaya Lorentz . Jika arus listrik dibalik sehingga mengalir dari B ke A, ternyata pita dari alumunium foil melengkung ke bawah. Jika arus listrik diperbesar maka alumunium foil akan melengkung lebih besar. Ini berarti besar dan arah gaya Lorentz tergantung besar dan arah arus listrik.
Karena gaya Lorentz ( FL ) , arus listrik ( I ) dan medan magnet ( B ) adalah besaran vector maka peninjauan secara matematik besar dan arah gaya Lorentz ini hasil perkalian vector ( cros-product ) dari I dan B.


FL = I x B



Besarnya gaya Lorentz dapat dihitung dengan rumus FL = I.B sinθ
Rumus ini berlaku untuk panjang kawat 1 meter.

Perhitungan diatas adalah gaya Lorentz yang mempengaruhi kawat tiap satuan panjang. Jadi jika panjang kawat = ℓ , maka besar gaya Lorentz dapat dihitung dengan rumus :

    FL = I . ℓ . B . Sin θ

  • FL = gaya Lorentz dalam newton ( N )
  • I = kuat arus listrik dalam ampere ( A )
  • ℓ = panjang kawat dalam meter ( m )
  • B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
  • θ = sudut antara arah I dan B

Dari rumus di atas ternyata jika besar sudut θ adalah :

  • Θ =900 , arah arus listrik dan medan magnet ( I dan B ) saling tegak lurus maka FL mencapai maksimum
  • Θ = 00 , arah arus listrik dan medan magnet ( I dan B ) saling sejajar maka FL = 0 atau kawat tidak dipengaruhi gaya Lorentz

Hubungan antara FL , I dan B dapat lebih mudah dipelajari dengan menggunakan kaidah tangan kiri. Yaitu dengan mengangan-angankan jika ibu jari, jari telunjuk dan jari tangah kita bentangkan saling tegak lurus, maka :

  • Ibu jari : menunjukan arah gaya Lorentz ( FL ) Arah gaya Lorentz
  • Jari telunjuk : menunjukkan arah medan magnet ( B )
  • Jari tengah : menunjukkan arah arus listrik ( I )

Coba sekarang kalian terapkan kaidah ini pada percobaan diatas, mengapa alumunium foil melengkung keatas ? sesuaikah dengan kaidah tangan kiri ?

Catatan :
Aturan ini dapat juga menggunakan kaidah tangan kanan, yaitu dengan mengangan-angankan jika Ibu jari, Jari Telunjuk dan Jari tengah kita bentangkan saling tegak lurus, maka : Jari tengah menunjuk arah gaya Lorentz, jari telunjuk menunjuk arah medan magnet dan Ibu jari menunjuk arah arus listrik.

Contoh Soal :

  1. Sebuah kawat berarus listrik I = 2 A membentang horizontal dengan arah arus dari utara ke selatan, berada dalam medan magnet homogen B = 10 – 4 T dengan arah vertikal ke atas. Bila panjang kawatnya 5 meter dan arah arus tegak lurus arah medan magnet. Berapa besar dan arah gaya Lorentz yang dialami oleh kawat ? ...

    Jawab :
    Diket : I = 2 A
    B = 10 – 4 T
    ℓ = 5 m

    Ditanya : FL = ............... ?
    Dijawab :

    FL = I . ℓ . B . sin θ
    = 2 ampere . 5 meter . 10 -4 Tesla . sin 900
    = 10-3 newton

    Dengan arah gaya menunjuk ke Barat

  2. Seutas kawat lurus yang terletak di equator diarahkan sejajar dengan bumi sepanjang arah timur-barat. Induksi magnetic dititik itu horizontal dan besarnya 6.10-5 T. Jika massa persatuan panjang kawat 5.10-3 kg/m dan g = 10 m/s2, berapa arus yang mengalir di dalam kawat supaya besar gaya yang dialaminya seimbang dengan berat kawat ? ….

    Jawab :
    Diket : B = 6.10-5 T
    m/L = 5 . 10-3kg/m
    g = 10 m/s2
    Ditanya : I = …….? Supaya gaya Lorentz seimbang dengan gaya berat
    Dijawab :

    FL = w
    B. I. L = m . g
    B . I = m/L . g
    6 . 10 – 5 . I = 5 . 10 – 3 . 10
    Jadi I = 5000/6 Ampere


GAYA LORENTZ

Konsep Gaya Lorentz

Jika arus listrik mengalir dari A ke B ternyata pita dari alumunium foil melengkung ke atas , ini berarti ada sesuatu gaya yang berarah keatas akibat adanya medan magnet homogen dari utara ke selatan. Gaya ini selanjutnya disebut sebagai gaya magnetic atau gaya Lorentz . Jika arus listrik dibalik sehingga mengalir dari B ke A, ternyata pita dari alumunium foil melengkung ke bawah. Jika arus listrik diperbesar maka alumunium foil akan melengkung lebih besar. Ini berarti besar dan arah gaya Lorentz tergantung besar dan arah arus listrik.
Karena gaya Lorentz ( FL ) , arus listrik ( I ) dan medan magnet ( B ) adalah besaran vector maka peninjauan secara matematik besar dan arah gaya Lorentz ini hasil perkalian vector ( cros-product ) dari I dan B.


FL = I x B



Besarnya gaya Lorentz dapat dihitung dengan rumus FL = I.B sinθ
Rumus ini berlaku untuk panjang kawat 1 meter.

Perhitungan diatas adalah gaya Lorentz yang mempengaruhi kawat tiap satuan panjang. Jadi jika panjang kawat = ℓ , maka besar gaya Lorentz dapat dihitung dengan rumus :

    FL = I . ℓ . B . Sin θ

  • FL = gaya Lorentz dalam newton ( N )
  • I = kuat arus listrik dalam ampere ( A )
  • ℓ = panjang kawat dalam meter ( m )
  • B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
  • θ = sudut antara arah I dan B

Dari rumus di atas ternyata jika besar sudut θ adalah :

  • Θ =900 , arah arus listrik dan medan magnet ( I dan B ) saling tegak lurus maka FL mencapai maksimum
  • Θ = 00 , arah arus listrik dan medan magnet ( I dan B ) saling sejajar maka FL = 0 atau kawat tidak dipengaruhi gaya Lorentz

Hubungan antara FL , I dan B dapat lebih mudah dipelajari dengan menggunakan kaidah tangan kiri. Yaitu dengan mengangan-angankan jika ibu jari, jari telunjuk dan jari tangah kita bentangkan saling tegak lurus, maka :

  • Ibu jari : menunjukan arah gaya Lorentz ( FL ) Arah gaya Lorentz
  • Jari telunjuk : menunjukkan arah medan magnet ( B )
  • Jari tengah : menunjukkan arah arus listrik ( I )

Coba sekarang kalian terapkan kaidah ini pada percobaan diatas, mengapa alumunium foil melengkung keatas ? sesuaikah dengan kaidah tangan kiri ?

Catatan :
Aturan ini dapat juga menggunakan kaidah tangan kanan, yaitu dengan mengangan-angankan jika Ibu jari, Jari Telunjuk dan Jari tengah kita bentangkan saling tegak lurus, maka : Jari tengah menunjuk arah gaya Lorentz, jari telunjuk menunjuk arah medan magnet dan Ibu jari menunjuk arah arus listrik.

Contoh Soal :

  1. Sebuah kawat berarus listrik I = 2 A membentang horizontal dengan arah arus dari utara ke selatan, berada dalam medan magnet homogen B = 10 – 4 T dengan arah vertikal ke atas. Bila panjang kawatnya 5 meter dan arah arus tegak lurus arah medan magnet. Berapa besar dan arah gaya Lorentz yang dialami oleh kawat ? ...

    Jawab :
    Diket : I = 2 A
    B = 10 – 4 T
    ℓ = 5 m

    Ditanya : FL = ............... ?
    Dijawab :

    FL = I . ℓ . B . sin θ
    = 2 ampere . 5 meter . 10 -4 Tesla . sin 900
    = 10-3 newton

    Dengan arah gaya menunjuk ke Barat

  2. Seutas kawat lurus yang terletak di equator diarahkan sejajar dengan bumi sepanjang arah timur-barat. Induksi magnetic dititik itu horizontal dan besarnya 6.10-5 T. Jika massa persatuan panjang kawat 5.10-3 kg/m dan g = 10 m/s2, berapa arus yang mengalir di dalam kawat supaya besar gaya yang dialaminya seimbang dengan berat kawat ? ….

    Jawab :
    Diket : B = 6.10-5 T
    m/L = 5 . 10-3kg/m
    g = 10 m/s2
    Ditanya : I = …….? Supaya gaya Lorentz seimbang dengan gaya berat
    Dijawab :

    FL = w
    B. I. L = m . g
    B . I = m/L . g
    6 . 10 – 5 . I = 5 . 10 – 3 . 10
    Jadi I = 5000/6 Ampere


Gaya Lorentz pada Dua Kawat Sejajar

Jika ada dua kawat saling sejajar dipasang saling berdekatan ternyata kedua kawat akan saling tarik-menarik jika dialiri arus searah , dan akan saling tolak menolak jika dialiri arus berlawan- an arah.

Dua kawat sejajar terpisah sejauh a dialiri arus listrik I1 dan I2 searah satu sama lain . Titik P adalah perpotongan antara kawat I1 dengan bidang dan titik Q perpotongan antara I2 dengan bidang. B1 adalah medan dititik Q akibat dari kuat arus I1 sedangkan B2 adalah medan magnet dititik P akibat dari kuat arus I2. Jika masing-masing titik ( P dan Q ) ditentukan arah gaya Lorentz yang dialaminya ( dengan menggunakan kaidah tangan kiri ) maka gaya F1 dan F2 akan seperti gambar. Gaya tersebut akan menyebabkan kedua kawat saling tertarik dan akan melengkung kedalam.
Bagaimana jika salah satu kawat dialiri arus listrik dengan berlawanan arah dengan kawat yang lainnya ?

Coba gambarkan sendiri , dengan I1 atau I2 dibalik arahnya ?

Besarnya gaya tarik atau tolak yang dialami kawat tiap satuan panjang setelah dijabarkan terdapat rumus :

  • FL = gaya Lorentz dalam newton ( N )
  • I1 dan I2 = arus pada masing-masing kawat dalam ampere ( A )
  • a = jarak antara kedua kawat dalam meter ( m )
  • μ0 = permeabilitas udara / ruang hampa = 4∏. 10-7 Wb/ Am. m
catatan :

Jika I1 = I2 = I , dan ℓ = 1 meter maka FL = μ0 I2 / 2π.a
Jika I = 1 ampere dan a = 1 m maka besarnya FL = 4∏. 10-7 ( 1 )2 / 2π.1 = 2 . 10-7 N

Dari hasil penjabaran tersebut maka definisi 1 ampere ditentukan sebagai berikut :

Definisi :
1 ampere adalah = besarnya arus listrik pada dua kawat sejajar yang berjarak satu meter satu sama lain sehingga jika kedua arus itu searah maka tiap satu satuan panjang ( 1 m ) kawat akan saling tarik-menarik dengan gaya sebesar 2 . 10-7 N

Contoh :

  1. Dua kawat sejajar satu sama lain berjarak 10 cm, pada kedua kawat mengalir arus listrik yang sama besar yaitu 10 A dengan arah arus yang sama. Bila panjang kawat 1 meter maka tentukan besar dan arah gaya Lorentz yang dialami kedua kawat !
    Jawab :
    Diketahui : I1 = I2 = 10 A
    a = 10 cm = 0,1 m
    ℓ = 1 meter

    Ditanya : FL = …………………….?
    Dijawab :

    FL = 4∏. 10-7 10.10 / 2∏.0,1
    = 2 . 10-4 N
    Dengan arah saling tarik menarik
  1. Tiga Buah kawat sejajar dialiri arus listrik dengan arah seperti gambar , Jika Jarak masing- masing kawat adalah a = 4 cm dan besar arus adalah masing-masing sama 8 A . Tentukan besar dan arah gaya Lorentz persatuan panjang yang dialami oleh kawat B ?

Jawab :


FAB =

= 4∏. 10-7 . 8 . 8 / 2∏. 4 . 10-2

= 3,2 . 10-4 Newton dengan arah keatas

FBC =

= 4∏. 10-7 . 8 . 8 / 2∏. 4 . 10-2 = 3,2 . 10-4 Newton dengan arah keatas

Karena FAB dan FBC searah maka ,
FB = gaya total yang dialami B adalah FAB + FBC = 6,4 . 10-4 N
Dengan arah keatas


Gaya Lorentz pada Muatan yang Bergerak

Sebuah partikel bermuatan listrik yang bergerak dalam daerah medan magnet homogen akan mendapatkan gaya. Gaya ini juga dinamakan gaya Lorentz. Gerak partikel akan menyimpang searah dengan gaya lorentz yang mempengaruhi.
Pada gambar tampak sebuah partikel bermuatan yang bergerak dalam medan magnet. Ditunjukkan bagaimana kalau partikel tersebut bermuatan positif ( gambar a ) dan bagaimana kalau partikel tersebut bermuatan negatif ( gambar b ) .

Arah gaya Lorentz pada muatan yang bergerak dapat juga ditentukan dengan kaidah tangan kiri

  • Ibu jari = sebagai arah gaya Lorentz
  • Jari telunjuk = sebagai arah medan magnet
  • Jari tengah = sebagai arah arus listrik

(untuk muatan positif arah gerak searah dengan arah arus, sedang untuk muatan negatif arah gerak berlawanan dengan arah arus )
Coba kalian terapkan pada gambar diatas, sesuaikah dengan aturan tersebut ?

Jika besar muatan q bergerak dengan kecepatan v, dan I = q / t maka persamaan gaya Lorentz untuk kawat dapat dituliskan :

FL = I . ℓ . B sin θ = q/t . ℓ . B sin θ
= q . ℓ/t . B sin θ = q . v . B sin θ
Karena ℓ/t = v .

Sehingga besarnya gaya Lorentz yang dialami oleh sebuah muatan yang bergerak dalam daerah medan magnet dapat dicari dengan menggunakan rumus :

FL = q . v . B sin θ
  • FL = gaya Lorentz dalam newton ( N )
  • q = besarnya muatan yang bergerak dalam coulomb ( C )
  • v = kecepatan muatan dalam meter / sekon ( m/s )
  • B = kuat medan magnet dalam Wb/m2 atau tesla ( T )
  • θ = sudut antara arah v dan B
  • FL selalu mempunyai arah tegak lurus dengan v dan B

Catatan penting :

Sebenarnya gaya yang mempengaruhi pada muatan yang bergerak dalam medan magnet disamping dipengaruhi gaya magnet juga dipengaruhi oleh gaya listrk sebesar F = q . E. Tetapi karena nlai gaya ini sangat kecil dibandingkan dengan gaya magnetnya maka didalam perhitungan terkadang diabaikan


Bila sebuah partikel bermuatan listrik bergerak tegak lurus dengan medan magnet homogen yang mempengaruhi selama geraknya, maka muatan akan bergerak dengan lintasan berupa lingkaran.
Sebuah muatan positif bergerak dalam medan magnet B (dengan arah menembus bidang) secara terus menerus (gambar P) akan membentuk lintasan lingkaran dengan gaya Lorentz yang timbul menuju ke pusat lingkaran. Demikian juga untuk muatan negative (gambar Q )

Persamaan-persamaan yang memenuhi pada muatan yang bergerak dalam medan magnet homogen sedemikian sehinga membentuk lintasan lingkaran adalah :
Gaya yang dialami akibat medan magnet : FL = q . v . B
Gaya sentripetal yang dialami oleh partikel : Dengan menyamakan kedua persamaan kia mendapatkan persamaan :

  • R = jari-jari lintasan partikel dalam meter ( m )
  • m = massa partikel dalam kilogram ( kg )
  • v = kecepatan partikel dalam meter / sekon ( m/s )
  • q = muatan partikel dalam coulomb ( C )



Contoh Penerapan Prinsip Gaya Lorentz

Contoh Penerapan Prinsip Gaya Lorentz dalam kehidupan sehari-hari adalah sebagai berikut :

  • Alat Ukur Listrik ( Amperemeter, voltmeter, Galvanometer , dll )

  • Generator AC atau DC

  • Motor Listrik dan Kipas

Contoh :

  1. Sebuah partikel bermuatan 1 μC bergerak tegak lurus dalam medan magnet homogen yang besarnya 10-4 T dengan jika kecepatan partikelnya 105 m/s. , maka tentukan gaya Lorentz yang dialami oleh partikel ?

Jawab :
Diketahui : q = 1 μC = 10-6 C
B = 10-4 T
V = 105 m/s
Ditanya : FL = …………….. ?
Dijawab :
FL = q . v . B . sin θ
= 10-6 C . 10-4 T . 105 m/s
= 10-5 N

  1. Sebuah muatan positif bergerak dibawah sebuah kawat berarus listrik sebesar 5 A berjarak 10 cm. Kecepatan muatan 2000 m/s searah dengan arah arus listrik. Jika besar muatannya 2.106 C berapa besar dan arah gaya Lorentz yang dialami oleh muatan tersebut ?

Jawab :
Diket : I = 5 A
a = 0,1 m
v = 2000 m/s
Q = 2.106 C
Ditanya : FL = ….. ?
Dijawab : FL = B.Q.v sin θ
= μ0. I. Q. v. (sin 90/2∏. a)
= 4∏. 107. 5. 2.106 . 2000 / 2∏. 0,1
= 4. 108 Newton dengan arah mendekati kawat

MEDAN MAGNET

Benda yang dapat menarik besi disebut MAGNET.

Macam-macam bentuk magnet, antara lain :

magnet batang magnet ladam magnet jarum

clip_image001

Magnet dapat diperoleh dengan cara buatan.

Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet.

clip_image002

Baja atau besi dapat pula dimagneti oleh arus listrik.

Baja atau besi itu dimasukkan ke dalam kumparan kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magnet serta membagi dua sebuah magnet disebut garis sumbu.

clip_image003

Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan.

Kutub magnet yang menghadap ke utara di sebut kutub Utara.

Kutub magnet yang menghadap ke Selatan disebut kutub Selatan.

Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ).

Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik.

clip_image004

Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik

Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat.

Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.

HUKUM COULOMB.

Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya.

clip_image005

clip_image007

F = gaya tarik menarik/gaya tolak menolak dalam newton.

R = jarak dalam meter.

m1 dan m2 kuat kutub magnet dalam Ampere-meter.clip_image009

clip_image0110 = permeabilitas hampa.

Nilai clip_image013= 107 Weber/A.m

Nilai permeabilitas benda-benda, ternyata tidak sama dengan permeabilitas hampa.

Perbandingan antara permeabilitas suatu zat debgan permeabilitas hampa disebut permeabilitas relatif zat itu.

mrclip_image015

clip_image011[1]r = Permeabilitas relatif suatu zat.

clip_image011[2] = permeabilitas zat itu

clip_image011[3]0 = permeabilitas hampa.

PENGERTIAN MEDAN MAGNET.

Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.

Kuat Medan ( H ) = ITENSITY.

Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam : clip_image017 atau dalam clip_image019

Garis Gaya.

Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.

Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.

Gambar pola garis-garis gaya.

clip_image020

Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B

Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.

clip_image022

Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.

clip_image024

clip_image026

B = rapat garis-garis gaya.

clip_image011[4] = Permeabilitas zat itu.

H = Kuat medan magnet.

catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.

Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )

clip_image028

Bila rapat garis-garis gaya dalam medan yang serba sama B, maka banyaknya garis-garis gaya ( clip_image030clip_image009[1] ) yang menembus bidang seluar A m2 dan mengapit sudut clip_image032 dengan kuat medan adalah : clip_image030[1] = B.A Sinclip_image032[1] Satuanya : Weber.

Diamagnetik Dan Para Magnetik.

Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik.

Benda magnetik : bila ditempatkan dalam medan magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta.

Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik.

Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico )

LATIHAN SOAL.

1. Dua kutub magnet sejenis kekuatannya 10-3 A.m

a. Beberapa gaya tolak menolaknya jika jaraknya 25 cm.

b. Berapa jarak antara kutub-kutub itu bila gaya tolak-menolaknya 10 N.

2. Sebuah kutub magnet mempunyai kekuatan 10-5 A.m

a. Berapa kuat medan di satu titik yang jaraknya 1 m.

b. Berapa induksi magnetik di tempat itu ?

c. Berapa kuat medan dan induksi magnetik pada jarak 0,25 m.

3. Kuat medan di titik dalam medan magnet 5 N/A.m

a. Berapa besar gaya yang bekerja pada magnet yang kekuatannya 10 A.m dititik itu ?

b. Berapa besar induksi magnetik di tempat itu ?

4. Berapa flux magnetik kutub magnet yang kekuatannya 10-2

5. Medan magnet yang serba sama mempunyai kuat medan sebesar 107 N/A.m

a. Berapa induksi magnetiknya ?

b. Berapa flux magnetik yang tegak lurus bidang seluas 2 m2

c. Jika bidang itu mengapit sudut 300 dengan medan magnet. Berapa flux magnetik yang menembus bidang itu ?

MEDAN MAGNET DI SEKITAR ARUS LISTRIK.

Percobaan OERSTED

Di atas jarum kompas yang seimbang dibentangkan seutas kawat, sehingga kawat itu sejajar dengan jarum kompas. jika kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya.

Kesimpulan : Disekitar arus listrik ada medan magnet.

clip_image033

Cara menentukan arah perkisaran jarum.

a. Bila arus listrik yang berada anatara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung-ujung jari, kutub utara jarum berkisar ke arah ibu jari.

b. Bila arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara.

Pola garis-garis gaya di sekitar arus lurus.

Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran-lingkaran yang titik pusatnya pada titik tembus kawat.

clip_image034

Kesimpulan : Garis-garis gaya di sekitar arus lurus berupa lingkaran-lingkaran yang berpusatkan pada arus tersebut.

Cara menentukan arah medan magnet

Bila arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet.

HUKUM BIOT SAVART.

Definisi : Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kwadrat jaraknya.

clip_image036B = k . clip_image038

clip_image039 k adalah tetapan, di dalam sistem Internasional

k = clip_image041 = 10-7 clip_image043

Vektor B tegak lurus pada l dan r, arahnya dapat ditentukan denagan tangan kanan. Jika l sangat kecil, dapat diganti dengan dl.

dB = clip_image041[1] clip_image038[1]

Persamaan ini disebut hukum Ampere.

INDUKSI MAGNETIK

Induksi magnetik di sekitar arus lurus.

clip_image046

Besar induksi magnetik di titik A yang jaraknya a dari kawat sebanding dengan kuat arus dalam kawat dan berbanding terbalik dengan jarak titik ke kawat.

B = clip_image048 . clip_image050

B dalam W/m2

I dalam Ampere

a dalam meter

Kuat medan dititik H = clip_image052 = clip_image054 = clip_image056

mr udara = 1

clip_image057

Jika kawat tidak panjang maka harus digunakan Rumus : clip_image059

Induksi Induksi magnetik di pusat arus lingkaran.

clip_image060

Titik A berjarak x dari pusat kawat melingkar besarnya induksi magnetik di A dirumuskan :

Jika kawat itu terdiri atas N lilitan maka :

B = clip_image048[1] . clip_image062 atau B = clip_image048[2] . clip_image064

Induksi magnetik di pusat lingkaran.

Dalam hal ini r = a dan a = 900

Besar induksi magnetik di pusat lingkaran.

B = clip_image048[3] . clip_image066

B dalam W/m2.

I dalam ampere.

N jumlah lilitan.

a jari-jari lilitan dalam meter.

Arah medan magnetik dapat ditentukan dengan aturan tangan kanan.

clip_image067

Jika arah arus sesuai dengan arah melingkar jari tangan kanan arah ibu jari menyatakan arah medan magnet.

Solenoide

Solenoide adalah gulungan kawat yang di gulung seperti spiral.

Bila kedalam solenoide dialirkan arus listrik, di dalam selenoide terjadi medan magnet dapat ditentukan dengan tangan.

Gambar :

clip_image068

Besar induksi magnetik dalam solenoide.

clip_image069

Jari-jari penampang solenoide a, banyaknya lilitan N dan panjang solenoide 1. Banyaknya lilitan pada dx adalah : clip_image071 atau n dx, n banyaknya lilitan tiap satuan panjang di titik P.

Bila 1 sangat besar dibandingkan dengan a, dan p berada di tengah-tengah maka a1= 0 0 dan a2 = 180 0

Induksi magnetik di tengah-tengah solenoide :

clip_image073

clip_image075

Bila p tepat di ujung-ujung solenoide a1= 0 0 dan a2 = 90 0

clip_image077

clip_image079

Toroida

Sebuah solenoide yanfg dilengkungkan sehingga sumbunya membentuk lingkaran di sebut Toroida.

Bila keliling sumbu toroida 1 dan lilitannya berdekatan, maka induksi magnetik pada sumbu toroida.

clip_image081

n dapat diganti dengan clip_image083

N banyaknya lilitan dan R jari-jari toroida.

LATIHAN SOAL.

1. Pada jarak 1 cm dari kawat lurus yang panjang terdapat titik A. Di dalam kawat mengalir arus listrik sebesar 10 Ampere.

a. Berapa besar induksi magnetik di titik A.

b. Berapa besar gaya yang bekerja pada kutub magnet yang berkekuatan 6,28 Am di

titik A.

2. Di atas jarum Kompas yang seimbang di bentangkan kawat lurus yang panjang, sehingga kawat itu sejajar dengan jarum kompas. Jarak antara jarum kompas dengan kawat adalah 5 cm. Kedalam kawat dialirkan arus listrik sebesar 4,5 A. Berapa besar induksi magnetik pada jarak 5 cm dari kawat.

3. Dua kawat 1 dan m yang sejajar berada pada jarak 4 cm satu sama lain. di dalam kawat 1 mengalir arus listrik 15 A dan dalam, kawat m sebesar 10 A. Tentukan besar induksi magnetik di tengah-tengah antara 1 dan m.

a. Jika arusnya searah.

b. Jika arusnya berlawanan arah.

4. Besar induksi magnetik di pusat arus yang berbentuk lingkaran 2.10-6 W/m2 jari-jari lingkaran 15,7 cm. = 3,14

a. Berapa besar kuat arus

b. Berapa gaya yang dialami kuat medan magnet yang kekuatannya 3,14.10-2 di titik

pusatnya.

5. Sebuah gulungan kawat yang tipis terdiri atas 100 lilitan jari-jarinya 10 cm. Kedalam kawat dialirkan arus listrik sebesar 5 Ampere. Berapa besar induksi magnetik di titik pusatnya ?

6. Sebuah gulungan kawat tipis terdiri atas 100 lilitan berjari-jari 3 cm. Didalam gulungan kawat mengalir arus listrik sebesar 0,5 A.

a. Berapa besar induksi magnetik disatu titik yang berada pada garis tegak lurus

lingkaran yang melalui pusatnya dengan jarak 4 cm.

b. Berapa besar gaya pada kuat kutub yang berkekuatan 2.10-4 Am.

7. Kawat yang berbentuk lingkaran berjari-jari 15 cm, dialiri arus listrik sebesar 10 A.

a. Berapa induksi magnetik dipusat lingkaran ?

b. Berapa induksi magnetik di suatu titik pada garis sumbu 20 cm dari pusat

lingkaran.

8. Sebuah solenoida panjangnya 25 cm mempunyai 500 gulungan dialiri arus listrik 5 A.

a. Berapa induksi magnetik ditengah-tengah solenoide.

b. Berapa induksi magnetik pada ujung-ujung solenoida.

c. Berapa induksi magnetik jika intinya besi = 5500

d. Berapa flux magnetik pada soal a, b dan c jika penampang solenoida 25 cm2.

9. Sebuah solenoida mempunyai 1250 lilitan, panjangnya 98 cm dan jari-jari penampangnya 2 cm. Bila kedalam solenoida dialirkan arus 1,4 Ampere.

a. Berapa kuat medan magnet ditengah-tengah solenoida dan di ujung-ujungnya ?

b. Berapa flux magnetik pada ujung-ujung solenoide.

10. Sebuah toroida mempunyai 3000 lilitan. Diameter luar dan dalam masing-masing 26 cm dan 22 cm. Berapa induksi magnetik dalam toroida bila mengalir arus 5 A.

GAYA LORENTZ

Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut :

Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri.

Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents.

gambar :

clip_image084

Besar Gaya Lorentz.

Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai :

F = B I clip_image086sin a

F = gaya Lorentz.

B = induksi magnetik medan magnet.

I = kuat arus.

clip_image086[1]= panjang kawat dalam medan magnet.

a = sudut yang diapit I dan B.

Satuan Kuat Arus.

Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik.

Penjelasannya sebagai berikut :

Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P.

clip_image087

Kesimpulan :

Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak.

Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :

clip_image089

Besar gaya Lorentz pada arus dalam kawat Q

clip_image091

Besar gaya Lorentz tiap satuan panjang

clip_image093

clip_image095

clip_image097

F tiap satuan panjang dalam N/m.

Ip dan IQ dalam Ampere dan a dalam meter.

Bila kuat arus dikedua kawat sama besarnya, maka :

clip_image099

Untuk I = 1 Ampere dan a = 1 m maka F = 2.10-7 N/m

Kesimpulan :

1 Ampere adalah kuat arus dalam kawat sejajar yang jaraknya 1 meter dan menimbulkan gaya Lorentz sebesar 2.10-7 N tiap meter.

Gerak Partikel Bermuatan Dalam Medan Listrik.

Pertambahan energi kinetik.

clip_image100

Partikel A yang massanya m dan muatannya q berada dalam medan listrik serba sama, kuat medannya E arah vektor E kekanan. Pada partikel bekerja gaya sebasar F = qE, oleh sebab itu partikel memperoleh percepatan : clip_image102

Usaha yang dilakukan gaya medan listrik setelah partikel berpindah d adalah :

W = F . d = q . E .d

Usaha yang dilakukan gaya sama dengan perubahan energi kinetik

Ek = q . E .d

clip_image104

v1 kecepatan awal partikel dan v2 kecepatannya setelah menempuh medan listrik sejauh d.

Lintasan partikel jika v tegak lurus E.

clip_image105

Didalam medan listrik serba sama yang kuat medannya E, bergerak partikel bermuatan positif dengan kecepatan vx.

Dalam hal ini partikel mengalami dua gerakan sekaligus, yakni gerak lurus beraturan sepanjang sumbu x dan gerak lurus berubah beraturan sepanjang sumbu y.

Oleh sebab itu lintasannya berupa parabola. Setelah melintasi medan listrik, lintasannya menyimpang dari lintasannya semula.

clip_image107

clip_image109

Kecepatan pada saat meninggalkan medan listrik.

clip_image111

clip_image113

Arah kecepatan dengan bidang horisontal q :

clip_image115

Gerak Partikel Bermuatan Dalam Medan Magnet

Besar gaya Lorentz pada partikel.

clip_image116

Pada arus listrik yang berada dalam medan magnet bekerja gaya Lorentz.

F = B . I . clip_image086[2]sin a

Arus listrik adalah gerakan partikel-partikel yang kecepatannya tertentu, oleh sebab itu rumus di atas dapat diubah menjadi :

F = B . clip_image118. v . t sin a

F = B . q . v sin a

F adalah gaya Lorentz pada partikel yang muatannya q dan kecepatannya v, B besar induksi magnetik medan magnet, a sudut yang diapit vektor v dan B.

Lintasan partikel bermuatan dalam medan magnet.

clip_image119

Tanda x menyatakan titik tembus garis-garis gaya kemagnetan yang arah induksi magnetiknya ( B ) meninggalkan kita. Pada partikel yang kecepatannya v, bekerja gaya Lorentz.

F = B . q . v sin 900

F = B . q . v

Vektor F selalu tegak lurus pada v, akibatnya partikel bergerak didalam medan magnet dengan lintasan bentuk : LINGKARAN.

Gaya centripetalnya yang mengendalikan gerak ini adalah gaya Lorentz.

Fc = F Lorentz

clip_image121= B . q . v

R = clip_image123

R jari-jari lintasan partikel dalam magnet.

m massa partikel.

v kecepatan partikel.

q muatan partikel.

Arah gaya Lorentz dapat ditentukan dengan kadah tangan kanan bila tangan kanan di buka : Ibu jari menunjukkan ( v ), keempat jari menunjukkan ( B ) dan arah telapak tangan menunjukkan ( F )

clip_image124


LATIHAN SOAL

1. Sepotong kawat lurus panjangnya 10 cm dialiri arus listrik sebesar 2A, kawat itu berada dalam medan magnet serba sama yang induksi magnetiknya 6.10-3 W/m2.

Berapa besar gaya Lorentz yang bekerja pada kawat itu jika.

a. Kawat tegak lurus arah induksi magnetik.

b. Kawat mengapit sudut 300 dengan arah induksi magnetik.

2. Kawat yang panjangnya 20 cm berada dalam medan magnet yang induksi magnetiknya 0,8 W/m2. Jika gaya yang dialami kawat 2,4 N, berapa kuat arusnya, ( arah arus tegak lurus medan magnet ).

3. Dua kawat sejajar masing-masing panjangnya 90 cm dan jaraknya satu sama lain 1 mm. Dalam kawat mengalir arus 5 A dalam arah arus berlawanan. Berapa besar gaya antara kedua kawat ?

4. Kawat A, B, C, adalah kawat yang titik tembusnya pada bidang lukisan membentuk segitiga sama kaki. Dalam kawat A dan B masaing-masing mengalir arus 9 A dan dalam kawat C mengalir arus 3 A.

clip_image125

Carilah besar gaya tiap satuan panjang yang bekerja pada arus di C.

5. Sebuah gulungan kawat yang berbentuk empat persegi sisi-sisinya 12 cm dan 15 cm, Banyaknuya lilitan 25. Gulungan kawat ini ditempatkan dalam medan magnet yang induksi magnetiknya 4.10-3 W/m2. Bidang kawat sejajar dengan medan magnet. Berapa momen koppel yang bekerja pada gulungan itu jika induksi magnetik :

a. Sejajar dengan sisi yang panjangnya 12 cm.

b. Sejajar dengan sisi yang panjangnya 15 cm.

c. Kuat arus yang mengalir 400 mA.

6. Sebuah coil tunggal berbentuk empat persegi dilalui arus 10 A, panjang ab adalah 10 cm dan sisi lainnya 20 cm. Diletakkan dalam medan magnetik sehingga sudut yang diapit induksi magnetik dengan bidang coil 600 B = 0,25 W/m2.

clip_image126

a. Berapa gaya Lorentz yang bekerja pada kawat a yang panjangnya 20 cm.

b. Berapa momen koppel yang dapat menahan coil dalam posisi tersebut.

7. Sebuah coil terdiri dari 50 gulungan kawat berbentuk bangun persegi panjang dengan ukuran 4 cm dan 5 cm.

Coil ini dipasang vertikal dan dapat berputar pada sumbu yang sejajar dengan sisi pendek. Medan magnet yang induksi magnetiknya 2 W/m2, arah induksi magnetiknya sejajar dan sebidang dengan coil. Berapa besar momen koppel untuk menahan jika :

a. Coil belum berputar ?

b. Coil sudah berputar 600 ?

Kuat arus yang mengalir 0,3 A.

8. Partikel yang bermuatan 10-6 C berada dalam medan listrik yang kuat medannya 2 V/cm. Massa partikel 0,02 gram.

a. Berapa percepatan yang diperoleh partikel ?

b. Berapa perubahan energi kinetiknya setelah bergerak 4 cm.

c. Berapa kecepatannya jika kecepatan awal sama dengan nol.

9. Elektron-elektron yang kecepatannya 4.104 m/det bergerak dalam medan magnet. Arah gerak elektron selalu tegak lurus arah medan magnet. Besar induksi magnetiknya 10-6 W/m2.

a. Berapa besar gaya Lorentz pada elektron.

b. Berapa jari-jari lintasannya ?

c. Berapa percepatan centripetalnya ?

Massa elektron + 9.10-31 Kg.

10. Didalam medan listrik yang kuat medannya 8.10-8 V/m bergerak elektron-elektron dengan kecepatan 4.104 m/s.

clip_image127

a. Kearah manakah simpangan elektron dalam listrik.

b. Agar lintasan elektron tetap lurus, harus dipasang medan magnet kemana arah

induksi magnetiknya?

c. Berapa besar induksi magnetik untuk keperluan tersebut?